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Orbit Determination Uncertainty Distributions and
Mappings in an Unstable Halo Orbit

D. J. Scheeres,! D. Han,? and Y. Hou®

The dynamics of orbit uncertainty in an unstable orbital environment are dis-
cussed with specific application to the orbit determination of a halo orbit about
the Earth—Sun L1 point. This article documents a simplified orbit determination
covariance program developed under Telecommunications and Mission Operations
Division Technology support. The program is ideally suited to investigate space-
craft trajectory navigation in challenging environments, where the basic dynam-
ics of the trajectory can no longer be modeled using near-Keplerian motion. The
model incorporates a range of dynamical models including the restricted three-body
problem, the attendant square-root information (SRIF) and state transition matrix
integrations, stochastic acceleration effects on the SRIF matrix, and a simplified yet
qualitatively accurate model of Doppler data. A series of computations is performed
showcasing the program’s ability to analyze the dynamics of orbit uncertainty dis-
tribution in unstable orbital environments.

[. Introduction

The dynamics of orbit determination uncertainties are studied for a spacecraft in an unstable halo orbit
in the Earth—Sun system. To bring the essential nature of the dynamics into clear focus, we use simple, yet
qualitatively accurate, models for the spacecraft dynamics and for the orbit determination measurements.
The orbit trajectory is analyzed using the Hill problem, which has a very simple specification yet contains
all the essential difficulties of the more general restricted three-body problem [1]. The measurement
information content is modeled using the classic Hamilton—-Melbourne analysis [2], modified so that it can
be used in a square-root information filter formulation. Finally, for realism, our model includes process
noise in the form of stochastic accelerations that modify the dynamics of the orbit uncertainty. The
current model does not address the non-linear effects that an unstable manifold will have on the orbit
uncertainty distribution, but leaves this for future investigations (cf. Junkins et al. [3] for an introduction
to this problem for near-Keplerian orbits).

The situation studied with the model investigates the basic processes at work in the orbit determination
of a spacecraft in a highly unstable libration point halo orbit [4]. This is a fundamentally different orbital
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environment from that found for planetary or solar orbiters, as evidenced by recent results concerning
the design and implementation of the Genesis mission [5], where extremely sensitive trajectories must be
flown in an environment where there are great pressures to decrease the total tracking time of spacecraft
(in order to decrease overall costs). Using the research model specified in this article is a first step to
an improved understanding of orbit determination in such unstable orbital environments. By properly
understanding these situations, it becomes possible to understand the impact of reduced tracking on
uncertainty distributions, and may eventually lead to the identification of “optimal” times to track the
spacecraft—potentially leading to reduced tracking times during other periods.

[I. Model Definition
A. Force Model and Trajectory

This article models a spacecraft trajectory that mimics the Genesis halo orbit, a highly unstable, non-
Keplerian trajectory [5]. To define the trajectory, we use an approximation to the three-body problem,
known as Hill’s problem [1], to model the spacecraft motion. This approximate model is simple to state yet
fully captures the relevant dynamics of the three-body problem for motion close to the second, smaller
primary (Earth in this case). There are three basic assumptions needed to derive this model [6], all
satisfied for the Earth—Sun system: that the spacecraft is relatively close to the Earth, that the mass of
the Earth is much smaller than that of the Sun, and that the Earth lies on a near-circular orbit about
the Sun. Making these assumptions leads to the equations of motion, specified in the frame centered at
the Earth and rotating with the Earth—Sun line:
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where r = /a2 + y? 4 22, w is the Earth’s rotation frequency about the Sun (corresponding to a period
of one year) and is the rotation rate of the coordinate frame, and p is the mass parameter of the Earth.
In this rotating frame, the x-axis points away from the Sun and the z-axis points normal to the Earth’s
orbital plane, the y-axis completing the triad. These equations of motion contain analogues to the L1 and
L2 points in the three-body problem and can recreate all the qualitative dynamical phenomena about
these points [7]. Tt should be noted that any dynamical model can be used in place of the above one. We
focus on this model for definiteness in this article.

The equations in Eq. (1) have been numerically integrated to find a periodic halo orbit with charac-
teristics similar to the Genesis halo orbit. The orbit has a period of just under 179 days and is plotted
(in the coordinate frame rotating with the Sun—Earth line) in Figs. 1 through 3. This is an unstable
periodic orbit, with a single hyperbolic instability. The Lyapunov characteristic exponent (LCE) of the
orbit corresponding to the hyperbolic instability is 4.756 x 10~7 /second, or 0.041/day, corresponding to
an expansion of 1.562 x 10% over one orbit period. Corresponding to the hyperbolic unstable term is a
hyperbolic stable term with an LCE equal and negative to the unstable LCE, corresponding to a contrac-
tion of 6.4 x 10~* over one orbit period. The remaining terms consist of a two-dimensional center manifold
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Fig. 1. An x-y projection of a halo orbit. The
Sun lies along the +x-direction, and the Earth
lies along the —x-direction. Motion occurs in the
counterclockwise direction.
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Fig. 2. An x-z projection of a halo orbit. The
Sun lies along the +x-direction, and the Earth
lies along the —x-direction. Due to symmetries
in the model, the periodic motion projects onto a
line in this coordinate plane.
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Fig. 3. Ay-z projection of a halo orbit. Motion
occurs in the counterclockwise direction.

with an oscillation period slightly greater than the orbit period, plus the usual two unity eigenvalues for
a closed periodic orbit corresponding to displacements along the orbit and along the surface of constant
Jacobi energy [8].

B. Trajectory Stability Characterization

For the analysis performed here, it is the stability properties of the trajectory over times less than
one orbit period that are important. For the orbit determination process, we are interested in the orbital
dynamics between measurement updates, which occur every few days to weeks. To accommodate this, a
generalization of the concept of stable and unstable orbits must be made that applies to relatively short
periods of time, what we call the local stability characteristics of the orbit.

These characteristics can be defined using the state transition matrix (STM) evaluated along the
trajectory. The STM, ®(¢,t,), is computed by integrating the variational equations simultaneously with
the trajectory equations:

B(t,t,) = AD(t,t,) (3)
B(to, to) = Ioxs (4)
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where V.. is the second partial of the force potential V' with respect to the spacecraft position vector.
The matrix A will vary with the position of the spacecraft in its halo orbit. Thus, the STM is implicitly
a function of the current and initial time as well as the initial state, or ®(¢,t,;r,,V,). Thus, when the
computation of the STM is initialized at different locations along the orbit, its local characteristics are
expected to change. It is only when the STM is computed over one (or multiple) orbit periods that it is
equal to the monodromy map [8] and the stability characteristics become independent of initial time and
state, according to Floquet Theory [9].

Now consider the general situation when the STM maps between two times within the nominal periodic
orbit, ®(t,t,;1,,V,), where t —t, is less than one orbit period. The eigenvalues and eigenvectors of ® can
be computed at each moment of time and are designated as (A, e;,f;),i = 1,2,---,6, where the \; are
the eigenvalues of ®, the e; are the corresponding right eigenvectors of ®, and the f; are the corresponding
left eigenvectors of ®. The state transition matrix can then be expressed as [10]
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The eigenvalues \; follow the same basic rules as are found for periodic orbits [8], where if \; is an
eigenvalue then so are A;; A, ! and A 1 where the overbar denotes complex conjugation.

For a given ®, we consider an eigenvalue with |\;| > 1 to be unstable, and its corresponding right
eigenvector e; to define its local “unstable manifold,” i.e., the direction relative to the nominal trajectory
in which the instability acts. An eigenvalue with |A;| < 1 is considered to be stable, and its corresponding
right eigenvector e; defines its local “stable manifold.” Finally, the eigenvalues with |\;| = 1 are oscillatory,
and their eigenvectors define the center manifold. Whereas the STM computed over one period about a
periodic orbit in a time-invariant system will always have two eigenvalues equal to 1, an STM computed
over a time span non-commensurate with the orbital period will, in general, not have any eigenvalues
equal to unity. Rather, the unity eigenvalues for the monodromy map will in general lie on the unit circle,
but off of the real axis, when evaluated over less than one period.

As defined above, the local manifolds (e;) and characteristics ();) of the orbit are a function of time
and initial state on the periodic orbit. As the time is varied for a given initial state, the spectrum of the
STM can suffer bifurcations and collisions, similar to the possible changes in the stability of a periodic
orbit as the problem parameters are varied [8]. As an example, we show the eigenvalues of our periodic
orbit as a function of time in Fig. 4. To “normalize” our presentation of eigenvalues, the plot shows the
finite-time Lyapunov characteristic exponents (LCEs) [11], defined as

_ In (2, 1)l

LCE;
t—1,
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where |A(¢,t,);] is the magnitude of the ith eigenvalue of the STM at time ¢, and ¢ — ¢, is the length
of time from the start of the STM mapping to the current time. We note that the hyperbolic roots
(those with strongly positive and negative LCE values) remain defined as a function of time, but that
the oscillatory roots (those with zero LCE values) experience short intervals in time when they bifurcate
into hyperbolic and complex roots, and back to oscillatory roots. As expected, the LCEs approach the
computed stability characteristics of the periodic orbit as time increases, and, if evaluated after multiples
of the orbit period (~179 days), we find that the LCEs are equal to the periodic orbit’s characteristics as
computed from the monodromy map. It must be noted that the particular form of the spectrum shown
in Fig. 4 is peculiar to our specific periodic orbit. If a significantly different periodic or non-periodic orbit
were evaluated, the resulting LCEs could have a significantly different time signature.
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Fig. 4. Finite-time LCEs for a mapped STM along the period-
ic orbit as a function of time. Note the dominant stable and
unstable LCEs and that the center manifold LCEs become
hyperbolic and complex over limited intervals of time.

Figure 4 corresponds to the pure mapping of an orbit forward in time, but does not represent the situ-
ation once measurements are incorporated into the dynamical system. In this case, the orbit uncertainty
distribution becomes updated “impulsively” after every measurement and the STM must be re-mapped,
starting from the identity matrix. To give an example of how such updates modify the trajectory char-
acteristics, we plot the dominant unstable hyperbolic LCE of the orbit with periodic resets of the STM
back to the identity matrix. This corresponds to the orbit covariance being re-normalized after every
measurement opportunity and the distribution of orbit uncertainty being updated. In the presence of
these updates, we see a clear pattern emerge for the variation of the LCEs as a function of time, shown
in Fig. 5. Thus we see that the properties of the unstable manifold, as they pertain to the mapping of
the orbit uncertainty, will change as a function of frequency of measurement. As the updates to the STM
become near continuous, the LCEs approach the spectrum of the A matrix in Eq. (5) evaluated along the
periodic orbit [12].

C. Filter Model

For accuracy and convenience purposes, the orbit uncertainties are computed and mapped using the
square-root information filter (SRIF) formulation [13]. To define the SRIF matrix, first recall the relation
between the orbit covariance and information matrix (c.f. Battin [14]):

P(t,t,) = A(t, to)~? (9)

where P is the orbit covariance matrix and A is the orbit information matrix. The SRIF matrix is then
found by computing the square root of the information matrix, defined via

A=R'R (10)

where R is defined as the SRIF matrix. To propagate the orbit uncertainty (or information), we propagate
the SRIF matrix R due to its improved numerical properties. In the absence of measurements and
stochastic accelerations, the SRIF matrix is the adjoint to the STM matrix and maps as
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Fig. 5. Maximum finite-time LCEs for mapped STMs updated at different
frequencies, showing that the character of the local unstable manifold
will change as a function of orbit geometry and tracking.

R(t,t,) = R(t,)®(to, 1) (11)

The presence of stochastic accelerations destroys this ideal property, and the SRIF matrix is governed by
the following differential equation:*

: 1
R=—-RA - §RBPWBTRTR (12)

where A is the same matrix as defined in Eq. (5) for the variational equations (the partial of the non-linear
state dynamics with respect to the current state), P,, represents the covariance of the process noise (i.e.,
random acceleration inputs) and is assumed to be constant, and B maps this noise into the dynamics.

In the current model, the stochastic accelerations are treated as having a constant steady-state un-
certainty, implying that they are not being estimated by the orbit determination filter. Under this
assumption, the matrix B maps P,, only into the velocity space of the SRIF matrix, and the covariance
matrix P, has the form

P, = 27021353 (13)

where 7 is the correlation time of the stochastic accelerations and o, is the steady-state uncertainty of
the acceleration.

4D. J. Scheeres, “Derivation of a Generalized Form of the SRIF Differential Equation,” JPL Interoffice Memorandum
314-564 (internal document), Jet Propulsion Laboratory, Pasadena, California, 1993.



Given these definitions, it is possible to directly integrate the orbit uncertainty dynamics in time as the
orbit trajectory and state transition matrix are integrated forward in time. The steady-state stochastic
acceleration and its correlation time are now parameter inputs to our dynamical system.

D. Measurement Models

Finally, measurements are incorporated into our system to develop a realistic model of orbit deter-
mination uncertainty. We assume the usual radio metric measurements of Doppler data. As this is not
a precision simulation, but a qualitative simulation, it is not necessary to model the Doppler data with
high precision. Rather, we need a formulation that correctly incorporates the main contribution of these
measurements into the orbit information matrix.

To incorporate the Doppler data measurement, we revisit the classic analysis of the information content
from a single pass of Doppler data performed by Hamilton and Melbourne [2]. This analysis shows that the
main information extracted from a Doppler pass is the location of the spacecraft in the plane-of-sky and
the line-of-sight velocity of the spacecraft with respect to the Earth. If the orbit uncertainty dynamics are
properly mapped between measurement passes, and the basic measurement information is incorporated
into the SRIF matrix at each pass, we can realistically model the evolution of orbit uncertainty over time.

To first order, the Doppler signal from a spacecraft is only a function of its radial speed (relative to
the station), its declination above the Earth’s equator, and its right ascension as measured relative to the
tracking station. If we denote these three variables as a vector Y = [, §, o], where 7 is the radial rate, §
the spacecraft declination, and « its right ascension, and if we designate the Doppler measurement by p,
then the information content of a single tracking pass can be formulated as [15]

1 (T2 rop\" [ op
AAog—T/ s <a—y) (a—y)‘” (14)

where T is the total tracking pass length and o, is the noise of the Doppler measurement. Carrying out
the operations and integration yields

24 0 —2Bsinvy
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where R; is the tracking station distance from the Earth’s spin axis, ¢ is the spacecraft declination in the
Earth frame, w is the Earth’s rotation rate, ¢ is the half-angle of the tracking pass, o, is the Doppler
measurement noise, and At is the time interval over which the noise value is defined. We assume that
the Doppler tracking data have an accuracy o, ~ 0.1 mm/s for At =60 s.

For a SRIF filter, the inclusion of measurements is usually performed using Householder transforma-
tions [13] to update the SRIF matrix with the measurement partials, properly scaled to represent the
data noise. Generally, Doppler measurements are scalar measurements, and the measurement partial is



a simple row vector. However, in our approach we combine the entire Doppler pass into one coupled
measurement of the three quantities of range rate, declination, and right ascension. Since these quan-
tities are integrated over a pass of Doppler data, there is not a convenient description of them outside
of the information matrix. To incorporate these measurements into the SRIF matrix, the measurement
partial of these quantities must be computed, which in this case will be a matrix that the Householder
transformation can accommodate.

To derive this effective measurement partial, we note that the information matrix of a single Doppler
pass can, itself, be expressed as a square-root matrix:

AA = (AR)TAR (18)

Applying a square-root algorithm to the 3-by-3 matrix yields
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The general procedure for updating the spacecraft SRIF matrix given our measurement partial AR is to
choose a Householder transformation Ty such that [13]

R R
) =[] @
where R is the new, updated SRIF matrix, which is then propagated forward in time.

With the current assumptions, the information content of an entire Doppler measurement pass can
be combined with the a priori information using purely analytical models. The use of such a simple
model provides flexibility in simulating the effect of different tracking schedules and geometries, while
not requiring that a detailed tracking schedule be implemented. To properly model the information
content of the Doppler data, a transformation from the Earth equatorial coordinate frame to the Earth
ecliptic frame (which is the frame that the spacecraft orbit is specified in) must be provided as well. This
transformation introduces an additional free parameter into our analysis, which we formulate as a phase
angle, but which really corresponds to the solar day at the start of the simulation. By varying this phase
angle, we vary the declination of the spacecraft over the time period in question. In general, this will also
cause the results of our orbit determination simulation to vary. Figure 6 shows declination histories of
the trajectory depending on the initial phase angle.

E. Validation of the Model

In order to validate our simplified model of orbit determination mapping and uncertainty, a compar-
ison of the overall results of our model was made with precision orbit determination studies performed
for the Discovery mission Genesis.> Comparisons between our simplified model and the precision models
at JPL yielded covariance agreements to an acceptable level, indicating that the simplified model captures

5D. Han, E. Carranza, B. G. Williams, and D. J. Scheeres, “Navigation Study Results for Genesis Mission,” JPL Interoffice
Memorandum 312.A-97-016 (internal document), Jet Propulsion Laboratory, Pasadena, California, July 15, 1997.
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Fig. 6. Spacecraft declination angles for different initial phase angles. A
0-deg phase at epoch corresponds to the fall equinox, a 90-deg phase to
the winter solstice, a 180-deg phase to the spring equinox, and a 270-
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the basic processes at work in this situation. Detailed comparisons between the results does not make
sense since the Genesis study was made using high-precision force and measurement models and a non-
repeating trajectory. The model described above has been carefully formulated to minimize inputs while
retaining a realistic model of the orbit determination function. This design allows the model to be used
for basic research into spacecraft navigation and orbit determination without having to specify detailed
parameters. Also, the simple design allows for the entire model to be contained within a single program,
eliminating the need for file transfers between the different functions of the model.

lll. Orbit Uncertainty Dynamics

Having defined our model problem of an unstable orbit and the accumulation and mapping of informa-
tion along that orbit, we carry out a number of simple computations to better quantify and understand
the influence of the unstable orbit on the orbit information and uncertainty distribution. All our numer-
ical calculations presented assume an initial phase angle of 270 deg; the resulting declination history can
be found in Fig. 6. The latitude of the Doppler tracking station is assumed to be 30 deg and the pass
angle to be 30 deg.

In the discussions, we will use the direction of the local unstable manifold and the direction of the
maximum orbit uncertainty in order to establish our results. As defined in Section II, the local unstable
manifold for our trajectory is computed from the state transition matrix and corresponds to the eigen-
vector of the largest eigenvalue with magnitude greater than one. From Figs. 4 and 5 it is clear that
this largest eigenvalue is unambiguously defined for the orbit under consideration. The direction of max-
imum orbit uncertainty is defined using the orbit covariance matrix. At each time step, we compute the
eigenvalues and eigenvectors of the covariance matrix and find the maximum eigenvalue of the matrix.
The direction of maximum uncertainty is then defined by the eigenvector associated with the maximum
eigenvalue. The influence of the local unstable manifolds on the orbit uncertainty distribution can then be
gauged by comparing the relative directions of the unstable manifold and the maximum uncertainty. In
the following, this comparison is made by taking the dot product of these two directions, where, since the

10



eigenvectors of these matrices are six-dimensional, the dot product is taken between two six-dimensional
vectors. When this projection is close to or equal to one, the unstable manifold can be considered to
be exerting a strong influence on the orbit uncertainty distribution. When the projection is close to
or equal to zero, the unstable manifold can be considered to be “well-determined,” indicating that the
sensitivity of trajectories along this direction is aiding in its determination. If the unstable manifold and
the maximum uncertainty direction were uncorrelated with each other, the average projection of these
directions would lie in the range of 0.4 to 0.6.

A. Overall Orbit Determination Performance

Using our base trajectory, we computed the orbit determination uncertainty of the spacecraft over two
halo orbit periods. Doppler passes are included every 2 or 25 days, and the trajectories have a steady-state
stochastic acceleration of 1076, 1072, or 1071° km/s? with correlation times of approximately 1/2 day.
Presented in Figs. 7 and 8 are plots of the average position and velocity uncertainties as functions of
time. The average was computed by taking the trace of the appropriate sub-matrix of the covariance,
dividing by three, and taking the square root. This gives us an overall measure of the orbit quality. It
also confirms the steady-state expectations of the system.

B. Mapping of Orbit Determination Uncertainties Without Measurements

To show that the direction of largest uncertainty no longer lies in the down-track direction, the maxi-
mum uncertainty direction and local unstable manifold were projected onto the down-track direction of
the orbit. Were the down-track direction still the dominant direction, we would expect the maximum
uncertainty direction to approach a projection value of 1 with the down-track direction. The results of
this computation are shown in Fig. 9. This figure corresponds to a mapping of an initial orbit uncertainty
distribution with no measurement updates. What is clear from this figure is that the unstable mani-
fold and the maximum uncertainty directions approach each other, and that the maximum uncertainty
direction does not align itself with the down track.
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Fig. 9. The unstable manifold and maximum direction
of uncertainty projected onto the down-track direction
for a mapped uncertainty distribution with no measure-
ments.

To show this more clearly, we plot the projection of the maximum uncertainty direction onto the local
unstable manifold in Fig. 10. As the projection approaches a value of unity, this clearly indicates that the
unstable manifold controls the direction of maximum orbit uncertainty. The implication of this is that
the direction of largest uncertainty, after mapping for a sufficiently long time period, will not be directly
related to the geometry of the orbit but will instead be related to the geometry of the unstable manifold,
which is a combination of both position and velocity directions in phase space.
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To bring this effect into sharper focus, we project the maximum orbit uncertainty direction onto the
unstable manifold direction and compute the time for the two directions to become aligned with each
other. In Table 1 the “entrainment” time for the two directions to come within 10 deg of each other is
given as a function of the amount of tracking prior to data cut-off and the level of stochastic acceleration.
It is interesting to note that the “average” characteristic time of the orbit is ~24 days (computed from
the periodic orbit’s largest characteristic exponent); thus, the orbit uncertainty will grow by an order
of magnitude in ~66 days. This correlates well with the time it takes the orbit uncertainty to become
entrained along the unstable manifold. We note some variation in the entrainment time with the level
of stochastic accelerations, with the clearest trend being a decrease in time for the larger values of
stochastic acceleration. The variation across these parameters is not that significant, however, indicating
that the unstable manifold continues to dominate the orbit distribution dynamics even when there are
large stochastic accelerations present.

Table 1. Time for the maximum uncertainty direction and the local unstable
manifold to align within 10 deg of each other in the absence of tracking. This
time varies with the amount of tracking prior to data cut-off and the steady-
state level of stochastic accelerations.

Tracking . . s
before Time to align to within 10 deg
data . .
Stochastic accelerations,
cut-off,
days 10716 km/s? 10712 km/s? 10719 km/s?
2 68 68 58
50 67 45 41
100 79 62 58
150 89 57 62
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C. Effect of Measurements on Orbit Determination Dynamics

Without measurements, the STM directions and maximum covariance uncertainty directions approach
each other asymptotically. With measurements, this effect no longer holds, and the direction of maximum
uncertainty and the unstable local manifold are no longer simply aligned. In Figs. 11 through 13, we
show the projection of the maximum uncertainty direction onto the local unstable manifold, each figure
corresponding to a different level of stochastic acceleration and each showing the distributions for a track
every 2 and 25 days. Although complicated, there are some basic results that can be extracted from these
plots. For the infrequent tracking schedule of one pass every 25 days, there is an obvious trend for the
maximum uncertainty direction to align with the unstable manifold—an effect that we characterized in
the previous section. Of specific interest, however, is that after the next measurement is incorporated the
maximum uncertainty direction becomes more orthogonal to the local unstable manifold. This is direct
evidence of the effect discussed earlier, which posited that, with tracking, the unstable manifolds should
become better determined in general due to the increased efficiency of measurements along this direction.
We see that this effect is pronounced for all levels of stochastic acceleration.

Next we note that the direction of maximum uncertainty tends to be orthogonal to the local unstable
manifold—indicated in Figs. 11 through 13 by the projection being relatively small over most of the
tracking history. Here, however, there are clear deviations from this effect that should be explained. The
same plots generated for different initial phase angles (or initial day of year) exhibit similar spikes in the
alignment between the maximum uncertainty direction and the unstable orbit, although their distribution
in time is different—indicating that the effect is due to the relative geometry of the spacecraft and
measurements. We also note a “smoothing” of the spikes with increasing level of stochastic acceleration.
A comprehensive series of comparisons between this projection geometry and other dynamical quantities
in the system shows that the strongest correlation with these periods of alignment occurs when the
maximum direction of uncertainty is aligned along the direction that is “unsensed” by the Doppler
measurements; in position space, this lies along the unit radius vector. Figures 14 through 16 overlay
plots of the projection of the maximum uncertainty direction onto the local unstable manifold and into
the unsensed direction of the Doppler measurements. The strong correlation between these two indicates
that the effect of the increased sensitivity of the unstable manifolds is lost when it is not immediately
detectable by the orbit determination measurements. The correlation in Figs. 14 through 16 is strongest
for low levels of stochastic acceleration and becomes less strong for larger levels of stochastic acceleration.
Periods when this alignment occurs appear to be most closely correlated with periods of slow or swift
motion of the spacecraft across the celestial sphere. In either of these cases, apparently, the measurement
conditions allow the unstable manifold to be unobservable for an interval of time.

The implications of these effects may be applicable to the design of simplified, robust navigation
schemes for single or multiple spacecraft flying in unstable orbital environments. If a consistent prediction
of the location and direction of the unstable manifolds can be found for a particular craft, it becomes
possible to implement a sensing and control strategy that takes advantage of this effect. A detected
growth of uncertainty along this direction could serve as an alert that the orbit determination or control
scheme is not performing properly. Conversely, due to the increased efficiency of measurements along this
direction, tracking schedules can be designed and optimized to take this into consideration.

V. Conclusions

This article addresses, at a preliminary level, the linear dynamics of uncertainty distribution, with
and without tracking, for a spacecraft in an unstable orbital environment (defined by the presence of
positive finite-time Lyapunov characteristic exponents). The numerical results model an orbital situation
similar to the proposed Genesis halo orbit trajectory. Interesting results include the divergence of the
maximum uncertainty direction and the down-track direction, the relation between the characteristic time
of the instability and the time between tracking cessation and dominance of the unstable manifold over
the orbit uncertainty distribution, the increased efficiency of measurements along the unstable manifold,
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Fig. 11. Projection of the maximum uncertainty direction onto the local
unstable manifold for a track every 2 and 25 days with a stochastic

acceleration level of 10716 km/s2.
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Fig. 12. Projection of the maximum uncertainty direction onto the local
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and the tendency of the unstable manifold to be well determined during periods of tracking (when it
is observable). These analyses were carried out using a square-root information matrix formulation for
numerical robustness, using analytical models of Doppler tracking to account for measurements, and with
correlated stochastic accelerations as an input parameter. The models developed in this article will be
used in future studies of orbit determination in unstable orbital environments.

References

[1] V. I Arnold, “Dynamical Systems IIL,” Encylopedia of Mathematical Sciences,
vol. 3, Berlin: Springer-Verlag, pp. 72-75, 1988.

[2] T. W. Hamilton and W. G. Melbourne, “Information Content of a Single Pass of
Doppler Data from a Distant Spacecraft,” Space Programs Summary 37-39, Jet
Propulsion Laboratory, Pasadena, California, vol. III, pp. 18-23, March—April
1966.

[3] J. L. Junkins, M. F. Akella, and K. T. Alfriend, “Non-Gaussian Error Propaga-
tion in Orbit Mechanics,” Journal of the Astronautical Sciences, vol. 44, no. 4,
pp. 541-563, 1996.

[4] R. W. Farquhar, The Utilization of Halo Orbits in Advanced Lunar Operations,
NASA Technical Note D-6365, 1971.

[5] K. C. Howell, B. T. Barden, and M. W. Lo, “Application of Dynamical Sys-
tems Theory to Trajectory Design for a Libration Point Mission,” Journal of the
Astronautical Sciences, vol. 45, no. 2, pp. 161-178, 1997.

[6] D. J. Scheeres, “The Restricted Hill Four-Body Problem with Applications to
the Earth-Moon-Sun System,” Celestial Mechanics and Dynamical Astronomy,
vol. 70, pp. 7598, 1998.

[7] A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton, New
Jersey: Princeton University Press, pp. 381-382, 1947.

[8] C. Marchal, The Three-Body Problem, Amsterdam: Elsevier, pp. 146-158, 1990.

[9] L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential
Equations, second edition, New York: Academic Press, pp. 55-59, 1963.

[10] J. D. D’Azzo and C. H. Houpis, Linear Control System Analysis and Design,
second edition, New York: McGraw-Hill, p. 615, 1981.

[11] C. Froeschlé, “The Lyapunov Characteristic Exponents—Applications to Celes-
tial Mechanics,” Celestial Mechanics, vol. 34, pp. 95-115, 1984.

[12] D. J. Scheeres and N. X. Vinh, “Dynamics and Control of Relative Motion in
an Unstable Orbit,” ATAA Paper 2000-4135, presented at the Astrodynamics
Specialist Conference, Denver, Colorado, August 11-14, 2000.

[13] G. J. Bierman, Factorization Methods for Discrete Sequential Estimation, San
Diego: Academic Press, 1977.

[14] R. H. Battin, “An Introduction of the Mathematics and Methods of Astrody-
namics,” AIAA Education Series, pp. 661-671, 1987.

[15] S. W. Thurman, “Comparison of Earth-Based Radio Metric Data Strategies for
Deep Space Navigation,” ATAA-90-2908-CP, 1990.

18



